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1 Abstract

Synchrony is broadly important to population and community dynamics due to its ubiquity1

and implications for extinction dynamics, system stability, and species diversity. Investiga-2

tions of synchrony in community ecology have tended to focus on covariance in the abun-3

dances of multiple species in a single location. Yet, the importance of regional environmental4

variation and spatial processes in community dynamics suggests that community properties,5

such as species richness, could fluctuate synchronously across patches in a metacommunity, in6

an analog of population spatial synchrony. Here, we test the prevalence of this phenomenon7

and the conditions under which it may occur using theoretical simulations and empirical8

data from 20 marine and terrestrial metacommunities. Additionally, given the importance9

of biodiversity for stability of ecosystem function, we posit that spatial synchrony in species10

richness is strongly related to stability. Our findings show that that metacommunities often11

exhibit spatial synchrony in species richness. We also found that richness synchrony can12

be driven by environmental stochasticity and dispersal, two mechanisms of population spa-13

tial synchrony. Richness synchrony also depended on community structure, including species14

evenness and beta diversity. Strikingly, ecosystem stability was more strongly related to rich-15

ness synchrony than to species richness itself, likely because richness synchrony integrates16

information about community processes and environmental forcing. Our study highlights a17

new approach for studying spatiotemporal community dynamics and emphasizes the spatial18

dimensions of community dynamics and stability.19

Key words: biodiversity, community synchrony, dispersal, ecosystem stability, Moran ef-20

fect, spatial synchrony21
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2 Introduction23

Synchrony has broad importance in population and community ecology, and recent efforts24

that integrate perspectives from these sub-disciplines have generated new insights into spa-25

tiotemporal population and community dynamics (Wang & Loreau, 2014; Walter et al., 2021;26

Wilcox et al., 2017; Arribas et al., 2019; Lee et al., 2019). Population spatial synchrony,27

where temporal fluctuations in abundance are correlated across populations inhabiting mul-28

tiple locations, is a fundamental feature of population dynamics observed across taxa and29

over wide-ranging spatial scales (Liebhold et al., 2004; Walter et al., 2017). Mechanisms un-30

derlying population spatial synchrony include dispersal, spatially correlated environmental31

fluctuations driving shared demographic responses (Moran effects), and interactions with a32

species that itself exhibits spatial synchrony (Moran, 1953; Liebhold et al., 2004). Spatially33

synchronous populations are at greater risk of regional extirpation or extinction. This is es-34

pecially true for species of conservation concern, such as stocks of exploited species (Schindler35

et al., 2015), as simultaneous rarity reduces the population rescue effect of dispersal (Earn36

et al., 1998; Heino, 1998).37

In contrast to population spatial synchrony, community ecology tends to focus on a differ-38

ent kind of synchrony: correlated temporal fluctuations of multiple species’ abundances in a39

single location. This “community synchrony” can alter the stability of its aggregate proper-40

ties. For example, community synchrony decreases the temporal stability of total abundance41

or biomass production (Micheli et al., 1999; Loreau & de Mazancourt, 2008), which is com-42

monly equated to ecosystem function (Donohue et al., 2016). Alternatively, stability is43

maintained when species fluctuate independently and especially if their fluctuations nega-44

tively covary. This negative covariance between species, commonly known as compensatory45

dynamics, reflects heterogeneity in species’ responses to environmental drivers, possibly me-46

diated through competitive release (Gonzalez & Loreau, 2009; Hallett et al., 2017).47
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As exemplified via the sustained focus on metacommunity theory over the past decade48

(Leibold et al., 2004; Leibold & Chase, 2017), there is growing recognition of the importance49

of spatial scaling and the interplay of local versus regional dynamics on community attributes50

such as biodiversity (Shoemaker & Melbourne, 2016; De Meester et al., 2016) and stability51

(Wang & Loreau, 2014; Wang et al., 2019). That many of the factors that are central to52

population spatial synchrony—including dispersal, temporal environmental variation, and53

spatial heterogeneity—have also proven important to spatiotemporal community dynamics54

suggests that we may, a priori, expect that biodiversity (e.g., species richness) could exhibit55

spatial synchrony, at least under some conditions. To date, however, whether biodiversity56

commonly exhibits spatial synchrony—and if so, why—is unknown. Here, we focus on spa-57

tial synchrony in species richness and explore potential mechanisms through which richness58

synchrony could arise, as well as its implications.59

There are several reasons to investigate synchrony in richness. Biodiversity is often asso-60

ciated with ecosystem function (Tilman & Downing, 1994; Schulze & Mooney, 2012; Rypel61

& David, 2017) and stability thereof (Cottingham et al., 2001; de Mazancourt et al., 2013).62

Species richness is widely used to quantify biodiversity, in part because presence-absence63

data are more easily obtained than data on abundance, or indices thereof, needed for other64

measures. Furthermore, studying synchrony in numbers of species bears quantitative simi-65

larity to studying synchrony in numbers of individuals, as in population spatial synchrony,66

even though the generating processes are more complex.67

Here, we consider how spatial synchrony in species richness might arise mechanistically.68

In a given location (e.g., a patch in a metacommunity), fluctuations in richness reflect local69

colonization and extinction events. Species richness could therefore exhibit spatial synchrony70

if colonization and extinction dynamics are themselves spatially correlated, for example due71

to dispersal. Dispersal could in principle produce synchronous fluctuations in species rich-72

ness even in a competitively neutral, homogeneous environment. Additionally, environmental73
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fluctuations could themselves cause or enhance richness synchrony (Harrison & Quinn, 1989),74

especially in settings where local extinctions are possible. Spatially correlated environmen-75

tal fluctuations could also synchronize patch-level richness by altering available niche space76

(Shoemaker & Melbourne, 2016) or shifting the suite of species favored under current con-77

ditions (Pitt & Heady, 1978). We expect that Moran effects on species richness are likely78

given that biodiversity can fluctuate in response to climatic variation (Peco et al., 1998), and79

that Moran effects on populations comprising the community—which are common (Liebhold80

et al., 2004)—may manifest in community metrics.81

Drawing on the implications of spatial synchrony for population stability, and the impli-82

cations of diversity and community synchrony for stability, we predict that spatial synchrony83

in richness will relate strongly to stability of ecosystem function at the landscape scale. More84

biodiverse systems systems may be more stable in the sense of tending to have lower tempo-85

ral variance in ecosystem function (Cottingham et al., 2001). Synchrony is destabilizing in86

the same sense because shared fluctuations reinforce each other and thereby total to large87

variations in the aggregate, while asynchronous fluctuations cancel out (Hallett et al., 2014;88

Anderson et al., 2021).89

This study integrates insights from a theoretical metacommunity model with a synthesis90

of 20 empirical metacommunities from terrestrial grassland and coastal marine biomes to91

examine the prevalence of spatial synchrony in species richness, the ecological factors that92

can promote or diminish it, and how it can provide insight into the stability of ecosystem93

function. Specifically, we address the following research questions: 1) Do local fluctuations94

in species richness exhibit spatial synchrony across metacommunity patches? 2) Are the95

well-documented drivers of population spatial synchrony (i.e., Moran effects and dispersal)96

also key drivers of spatial synchrony in richness? 3) Does a community’s strength of spatial97

synchrony of richness relate to ecosystem stability and how does this compare to relationships98

between richness and stability? Overall, our study demonstrates the commonness of spatial99
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synchrony in species richness, identifies key abiotic and biotic factors that alter the degree100

of richness synchrony, and explores how the spatial synchrony of richness may be strongly101

related to the temporal stability of ecosystem function.102

3 Methods103

3.1 Quantifying synchrony in community properties104

Although spatial synchrony has mainly been quantified for population variables, spatial105

synchrony can, in principle, be quantified for any time-varying quantity with measurements106

taken through time in different places. We measured spatial synchrony of species richness107

as follows. We began with data consisting of species’ abundances at P locations (hereafter,108

patches) through time. We measured species richness of each patch at each time step to109

compute richness, Rp,t, where p is the patch and t is the time-step. We then linearly detrended110

the time series, standardized variances of each time series to one, and computed the matrix111

of Spearman correlations for fluctuations in richness through time between all patch pairs.112

Finally, the lower triangle (excluding the diagonal) of the correlation matrix was averaged to113

produce one representative value for each site (metacommunity), as commonly occurs when114

examining community synchrony (Hallett et al., 2014; Kent et al., 2007), and allows us to115

compare across metacommunities.116

3.2 Theoretical modelling117

To examine when we expect to observe spatial synchrony of richness and what mechanisms118

most alter it, we applied the above workflow to simulated metacommunities. Coupling a119

theoretical model that incorporates known underlying mechanisms with a statistical analy-120

sis of the spatial synchrony of richness provides insight into the behavior of synchrony under121
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different ecological mechanisms. In brief, our metacommunity model connects local patch-122

level dynamics to regional dynamics via dispersal. Growth, competition, and environmental123

effects occur within a patch, environmental conditions of each patch vary both through space124

and time, and patches are connected via dispersal of individuals. Within-patch dynamics125

follow a multispecies, metacommunity extension of the model of Loreau and de Mazancourt126

(2013), which is a discrete-time modification of classic Lotka-Volterra competition dynam-127

ics that incorporates both demographic and environmental stochasticity and disentangles128

species’ carrying capacities from their competitive effects (Loreau & de Mazancourt, 2008;129

Loreau, 2010).130

First, prior to local population dynamics, dispersal between patches occurs. We model131

dispersal as both local and global (global results are presented in Appendix S1). Abundance132

N of each species s in a given patch p after dispersal, but before population growth, is133

indexed as time step t+ δ, and is modeled as:134

Ns,p,t+δ = Ns,p,t − Es,p,t + Is,p,t (1)

where Es,p,t denotes emmigration of species s from patch p while Is,p,t denotes immigraiton.135

For global dispersal, Es,p,t = −dsNs,p,t and Is,p,t = ds
∑

x6=p

Ns,x,t

P − 1
where P denotes the total136

number of patches in the metacommunity, and d is the across-patch stochastic dispersal prob-137

ability, where propagule dispersal is binomially distributed with the probability of success138

equal to d (Shoemaker & Melbourne, 2016). Alternatively, for local dispersal, propogules139

disperse only to their nearest neighbor patches, and the landscape is modeled as a square140

lattice with wrap-around boundaries (Kerr et al., 2002).141

Following dispersal, within a patch, p, the abundance of each species changes through142
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time t according to:143

Ns,p,t+1 = Ns,p,t+δ exp[rs(1−
Ns,p,t+δ

Ks

−

∑

j 6=s

βs,jNj,p,t+δ

Kj

) + σe,sµe,p,t +
σd,sµd,s,p,t
√

Ns,p,t+δ

], (2)

In the above equation, r is a species’ intrinsic (density-independent growth rate), K is its144

carrying capacity in a patch, and βs,j is the competition coefficient of species j on species s.145

Compared to a classic Lotka-Volterra model, here we separate species’ interspecific compet-146

itive effects (βs,j) from their carrying capacities (Ks). This formalization is related to the α147

coefficients of Lotka-Volterra dynamics where βs,j = αs,jKj/Ks (Loreau & de Mazancourt,148

2013). Model parameters and their values are given in Table 1.149

Demographic stochasticity is incorporated as a traditional first-order normal approxima-150

tion, and represents inherent variation between individuals in birth and death rates (Lande151

et al., 2003). Here, σd,s is the susceptibility of species s to demographic fluctuations and152

µd,s,p,t are independent, identically distributed normal variables with mean zero and variance153

one representing fluctuations through time for each species in each patch.154

Environmental stochasticity is similarly incorporated through µe,p,t, which represents155

environmental variation in each patch through time and σe,s, which quantifies the impact of156

environmental variation on each species s. While Loreau and de Mazancourt (2013) restricted157

µe,p,t to be uncorrelated, here we extend their model to allow for temporal autocorrelation in158

environmental conditions and variation across patches. To do so, we follow the formulation159

from Ripa and Lundberg (1996), where we first create a time series of regional climate160

conditions, c:161

ct+1 = act + bφt. (3)

We set the initial condition c0 = 0. In eqn 3, a controls the temporal autocorrelation of the162
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climate where a = 0 represents uncorrelated, white noise. When a > 0, successive events163

are more likely to be similar to other events that occur closely in time (Ripa & Lundberg,164

1996). Stochastic noise φt ∼ Normal(0, 1) is scaled by the magnitude of its effect, b. Fol-165

lowing Ripa and Lundberg 1996, b = (1−a2)0.5, which restricts var(c) to be the same for all166

autocorrelation (a values) considered. From the time series of regional climactic conditions,167

we create between-patch variation that represents the degree of microhabitat variation, as-168

suming that spatial heterogeneity is less than temporal variation to match the spatial scale169

of our empirical metacommunities (Ford et al., 2013; Gómez-Aparicio et al., 2005). To cre-170

ate microhabitat variation, µe,p,t ∼ Normal(ct, h) where h controls the variability between171

patches.172

Using the above model, we examine the relative effects of multiple abiotic and biotic173

factors on the spatial synchrony of richness. We simulated metacommunities that differed174

in: richness of the regional species pool (S; matching the empirically observed range), number175

of patches (P ; again matching the empirically observed range), spatial heterogeneity in patch176

quality (h), temporal autocorrelation of the regional climate conditions (a), species’ responses177

to environmental fluctuations (σe,s), species’ growth rates (r), species’ competitive strengths178

(βs,j), and dispersal rates (d). All variable parameters were drawn independently from the179

distributions in Table 1, which also includes values for non-focal parameters (e.g. µd,s, Ks).180

We began each simulation with species’ abundances set to their carrying capacities, Ks,181

and as the model quickly settles on its steady-state distribution, we simulated our model182

for 100 time steps. We used the first 50 time steps as a “burn-in” period to remove any183

effect of initial conditions on our analyses. The last 50 time steps were used for calculating184

spatial synchrony of species richness, creating time series for each simulation with length on185

the same order as those from our empirical analyses. We ran a total of 2500 simulations186

and calculated spatial synchrony in species richness and the coefficient of variation in total187

abundance in all simulations.188
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3.3 Empirical datasets189

We paired our theoretical model with a study of 20 empirical metacommunities encompassing190

both grassland and coastal marine habitats, primarily drawing from the United States Long191

Term Ecological Research Network. All datasets consisted of regularly sampled observations192

of species’ abundance in a community for at least 6 plots and 10 years (Table 2). All datasets193

focused on primary producer taxa in unmanipulated plots. Plots in empirical datasets were194

taken to be equivalent to patches and for consistency are called patches henceforth. At some195

sites, up to three distinct metacommunities were considered separately. Metacommunities196

were considered distinct on the basis of diverging habitat such as soil type or disturbance197

frequency, dissimilarity in species present, and the opinion of investigators familiar with these198

sites. Additional description of dataset properties and provenance is provided in Appendix199

S1: Section 1. We included all species having non-zero abundance in at least 5% of patch-200

by-time combinations in order to minimize any potential bias of observational error on our201

results. Preliminary analyses using different thresholds from 0% (no threshold) to 10%202

indicated that measured spatial synchrony of richness was robust to our 5% threshold choice.203

3.4 Analyses of empirical and theoretical communities204

We applied parallel analyses to our model simulations and empirical data to address our205

research questions. We first asked whether species richness exhibits spatial synchrony (Q1).206

To address this question using theoretical simulations, we computed the mean richness syn-207

chrony for all 2500 simulated metacommunities and examined the distribution of theoretical208

richness synchrony measures. To address this question empirically, we computed the mean209

spatial synchrony of richness for all 20 focal metacommunity datasets and tested the statisti-210

cal significance of spatial synchrony of richness for each. Significance testing was performed211

by comparing empirical values to surrogate values from simulated data generated under a null212
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hypothesis of no spatial synchrony, while preserving the temporal autocorrelation structures213

of the empirical data. Surrogate datasets were generated by taking the amplitude-adjusted214

Fourier transform of input species richness time series, randomizing the phases of the Fourier215

components so that any remaining spatial synchrony is due to chance alone, inverse trans-216

forming the data, and measuring the synchrony of the surrogates (Schreiber & Schmitz,217

2000). We generated 1, 000 surrogates for each dataset, and considered richness synchrony218

statistically significant when the empirical value exceeded 95% of surrogates.219

To determine the key drivers of spatial synchrony in richness (Q2), we used multiple220

linear regression to measure the combined effects of multiple predictors on the synchrony of221

richness. Predictors were re-scaled to have a mean of zero and standard deviation of 1 so222

that regression coefficients corresponded to effect sizes. In our theoretical simulations, we ex-223

amined the effects of key parameters that fall into three general categories: abiotic temporal224

factors, abiotic spatial factors, and demographic factors. Abiotic temporal factors included225

in our regression are the effect of environmental variation on species (envsd, the variability226

of environmental driver σe), and temporal autocorrelation in environmental variation (a)227

(Table 1). Abiotic spatial factors include the total number of patches (P ) and the amount of228

patch heterogeneity (h). Finally, we examined the effect of demographic variation, specifi-229

cally in the parameters: average species’ density-independent growth rates (ravg), maximum230

competitive strength (βmax), and species’ dispersal rates (ds).231

To answer Q2 for empirical metacommunities, we considered the following predictor232

variables: biome (terrestrial or marine), metacommunity extent (maximum distance between233

patches), species richness, evenness, beta diversity, and species turnover rate. To facilitate234

model-data comparisons, we also examined the effects of species richness, evenness, beta235

diversity, and turnover rate in simulated metacommunities. Species richness and evenness236

were the mean richness and evenness of individual patches, averaged across time. Spatial237

beta diversity was the mean Jaccard similarity (Hallett et al., 2016) among patches, with238

11

This	article	is	protected	by	copyright.	All	rights	reserved

A
cc

ep
te

d 
A

rt
ic

le



the species list for each patch inclusive of all years in the time series (after removing species239

present in less than 5% of patch-years). Turnover rate was the average patch-level temporal240

turnover in species composition (Hallett et al., 2016), and metacommunity extent was the241

maximum distance between patches, measured in kilometers.242

To address whether the strength of synchrony in richness predicts ecosystem stability243

(Q3), we measured the temporal stability of ecosystem function as -1 × the coefficient of244

variation (CV) over time of metacommunity total biomass/cover as a measure of ecosystem245

stability. That is, −1× σ̂
µ̂
, where µ̂ is the sample mean and σ̂ is the sample standard deviation.246

We multiplied values by -1 so that increases in the statistic corresponded to increases in247

stability. Other studies have used 1/CV, but in our data this created skewed distributions.248

We examined how richness synchrony predicts ecosystem stability using linear regression, and249

compared the strength of this relationship to the relationship between ecosystem stability250

and: species richness, evenness, beta diversity, and turnover rate. We focus primarily on the251

often-studied relationship between richness and ecosystem stability (e.g. Tilman & Downing252

(1994); Garćıa-Palacios et al. (2018)). Here, species richness is the average richness over all253

patches and time steps (years).254

4 Results255

In both our theoretical model and across 20 empirical metacommunities, spatial synchrony in256

species richness varied widely among communities, spanning nearly the entire plausible range257

of the statistic (Figure 1). The distributions of theoretical and empirical richness synchrony258

were qualitatively similar (Figure 1a,b). Coastal marine metacommunities tended to exhibit259

less richness synchrony than terrestrial grasslands, but also tended to have the larger spatial260

extents (Table 2). The magnitudes of spatial synchrony in richness tended to be significantly261

greater than surrogates representing a null hypothesis of no synchrony, suggesting that spatial262
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synchrony of richness is a common phenomenon across ecosystems (Appendix S1: Section263

2); in all empirical metacommunities, p < 0.05, with the exception of Dry Tortugas (Florida264

Keys) corals (DRT; p = 0.18) and Maui, Hawaii corals (MAU; p = 0.052).265

When examining which parameters predominantly alter the synchrony of richness in266

our model, we found that temporal abiotic variation had the strongest effect, followed by267

demographic rates. Specifically, the effect sizes indicated that the strength of temporal envi-268

ronmental variation (envsd) and the degree of autocorrelation in the temporal environmental269

fluctuations (a) had the strongest effects on richness synchrony (Fig. 2). Dispersal (d)270

and competitive strength (βmax) had smaller, but still positive effect on richness synchrony.271

The positive effect of dispersal was consistent with our expectations from population syn-272

chrony, where increasing dispersal increases population synchrony. Surprisingly, however,273

spatial heterogeneity in environmental variation had essentially no effect on richness syn-274

chrony. This combination of predictors explained 25% of variation in richness synchrony275

across 2,500 simulations.276

In empirical metacommunities, biome (i.e. marine versus grassland ecosystems) was277

strongly related to richness synchrony, but with a large standard error (Figure 3). Because278

both the degree of spatial autocorrelation in environmental conditions and the rate of dis-279

persal between patches typically decrease as the distance between them grows, we expected280

that extent would have a negative effect on richness synchrony, consistent with dispersal and281

Moran effects acting as key drivers of richness synchrony. Consistent with our prediction,282

metacommunity extent was negatively related to synchrony in richness, however with a large283

standard error (Figure 3).284

As some underlying biological and abiotic factors were impossible to measure in observa-285

tional studies, we examined potential covariates of richness synchrony that were calculated286

for both theoretical models and observational data. There was a strong positive relationship287

between species turnover on richness synchrony across both theoretical and empirical meta-288

13

This	article	is	protected	by	copyright.	All	rights	reserved

A
cc

ep
te

d 
A

rt
ic

le



communities (Figure 3). This is consistent with the fact that changes in species richness289

imply turnover, but also highlights how community structure and environmental perturba-290

tions also likely shaped the spatial synchrony of richness since these factors influence turnover291

rates (Kraft et al., 2011; Myers et al., 2015). Given that some communities may be more292

prone to turnover than others when faced with environmental variation, communities may293

vary in the magnitude of spatial synchrony of richness. In empirical communities, richness294

synchrony was positively related to the average richness of the metacommunity, but the stan-295

dard error was large; in theoretical metacommunities, the effect had a similar magnitude but296

was negative (Figure 3). In both theoretical and empirical metacommunities there was no297

substantial effect of beta diversity on richness synchrony. For theoretical metacommunities298

only, we further examined the importance of beta diversity using the decomposition method299

of Baselga & Orme (2012) into components associated with change in species number ver-300

sus species replacement between communities. The component associated with change in301

species number had a positive effect on richness synchrony and the component associated302

with species replacement had a negative effect on richness synchrony. We did not examine303

this for empirical metacommunities because of the much lower sample size. Neither model304

nor data show a notable effect of evenness on richness synchrony. In our simulations, these305

possible explanatory variables were emergent properties of underlying community assembly306

mechanisms, not directly controlled. This combination of predictors explained 69% of vari-307

ability in richness synchrony in empirical metacommunities, and 5% of variability in richness308

synchrony in simulated metacommunities.309

Importantly, spatial synchrony of richness was negatively related to the stability of ecosys-310

tem function in both theoretical and empirical metacommunities, and exhibited a stronger311

relationship with stability than species richness itself (Figure 4). Both theoretical and em-312

pirical relationships between the spatial synchrony of richness and community stability were313

relatively strong (R2 = 0.22 and R2 = 0.42, respectively), compared to the relationship be-314
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tween diversity and stability (R2 = 0.08 and R2 = 0.13, respectively). As such, across meta-315

communities and underlying mechanisms—as manipulated in our simulation modeling—the316

spatial synchrony of richness emerged as the stronger predictor of stability. Additionally, the317

spatial synchrony of richness was generally more strongly related to stability than evenness,318

beta diversity, turnover rate, although the relationship with turnover had an approximately319

equal R2 as for richness synchrony (Appendix S1: Section 3).320

Theoretical simulations using global versus local dispersal yielded consistent results (Ap-321

pendix S1: Section 4).322

5 Discussion323

Metacommunities often exhibit spatially synchronous fluctuations in species richness (Q1)324

that are driven in part by Moran effects and dispersal (Q2), two canonical drivers of popu-325

lation spatial synchrony (Liebhold et al., 2004; Moran, 1953; Walter et al., 2017). In both326

mathematical models and observational data spanning marine and terrestrial metacommu-327

nities, spatial synchrony of richness was negatively correlated with ecosystem stability, and328

showed a stronger correlation than species richness itself (Q3). These findings integrate329

perspectives on spatial synchrony from population ecology with biodiversity’s implications330

for ecosystem stability and function, and reinforce the importance of spatial dimensions of331

stability (Wang & Loreau, 2014; Wilcox et al., 2017; Lamy et al., 2019; Gonzalez et al., 2020;332

Wang et al., 2019).333

Spatial synchrony in species richness appears to be a common phenomenon. Across 20334

empirical metacommunities in grassland and coastal marine habitats, spatial synchrony in335

richness varied substantially, but in 90% of cases was greater than expected under a null336

hypothesis of no spatial synchrony. In addition, spatial synchrony in species richness has337

been documented in two recent studies (Barringer et al., 2020; Arribas et al., 2019), but338
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these studies considered only a few empirical metacommunities. In our study, terrestrial339

ecosystems tended to exhibit higher spatial synchrony in species richness. Marine metacom-340

munities tended to have larger spatial extents (Table 2), which may partially explain this341

pattern due to the potential for decreased dispersal and environmental spatial correlation342

with increasing spatial extent. The biomes also tended to differ in the typical lifespans of in-343

dividuals in the community (e.g. long-lived corals vs. a mix of annual and perennial plants),344

possibly affecting the sensitivity of the community to interannual environmental variability.345

The variability in the degree of spatial synchrony of richness exhibited by a metacom-346

munity was influenced by attributes of the environment, especially the degree of temporal347

variability in environmental conditions, and by the structure of the community. Fluctua-348

tions in species richness imply year-to-year species turnover, and some communities will be349

more prone to turnover than others due to underlying environmental conditions, disturbance350

events (Worm & Duffy, 2003; Myers et al., 2015), and the demography of constituent species351

(Ripa & Lundberg, 1996; Adler & Drake, 2008). How demography alters richness synchrony352

likely interacts with the nature of environmental fluctuations. Some communities with many353

rare, extinction-prone species could exhibit little richness synchrony if extinctions are spa-354

tiotemporally random, e.g. if they arise more so from demographic stochasticity than from355

environmental forcing. By contrast, a community with lower turnover might exhibit greater356

synchrony in richness if turnover is closely tied to large, spatially synchronous environmental357

perturbations that locally extirpate, or facilitate the emergence of, multiple species simulta-358

neously.359

In fact, the dependence of richness synchrony on both environmental variation and com-360

munity structure seems to explain small discrepancies between our theoretical and empirical361

results. In particular, species richness had opposing relationships with richness synchrony in362

empirical versus theoretical cases (Figure 3). In empirical metacommunities, turnover was363

higher than simulated communities, and richness and evenness were positively correlated,364
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suggesting that as we added more species the aggregated community-level carrying capac-365

ity was partitioned among more species; this lowered abundances on average, making more366

species susceptible to environmental perturbation and leading to synchronous fluctuations in367

richness. Meanwhile, in our simulated metacommunities, turnover rates were low and even-368

ness was high but negatively correlated with richness. In this case, higher richness yielded369

more rare species that tended to stochastically and asynchronously become locally extinct370

and/or colonize new patches.371

The relationship between biodiversity and stability of ecosystem function has generated a372

great deal of interest in ecology over multiple decades of research (Tilman & Downing, 1994;373

Schulze & Mooney, 2012; Cottingham et al., 2001; de Mazancourt et al., 2013). We found374

that spatial synchrony in richness was more strongly related to stability of total biomass375

production than was species richness itself (Figure 4). The negative relationship between376

richness synchrony and ecosystem stability was expected due to the known destabilizing377

effects of synchrony in population spatial (Anderson et al., 2021) and community (Hallett378

et al., 2014; de Mazancourt et al., 2013) synchrony. However, it remains noteworthy since379

the relationship between synchrony in species number and aggregate abundance (as in this380

study) is less direct than the relationship between abundances in component units and381

aggregate abundance (as in population spatial and community synchrony studies). The382

relative success of the spatial synchrony of richness in predicting ecosystem stability seems383

to arise primarily because it is a metric that simultaneously reflects information both about384

community structure and both spatial and temporal environmental variability. For example,385

greater stability and lower richness synchrony in marine metacommunities, which tended to386

have larger extents in our study, could reflect spatial insurance effects (Wang & Loreau, 2014;387

Lamy et al., 2019). Our study suggests that richness synchrony may generally be closely388

related to ecosystem stability and function, providing additional insight into the relationship389

between biodiversity, synchrony, and stability.390
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Studying the spatial synchrony of species richness represents a promising approach for391

investigating drivers of community variability and their consequences for stability of ecosys-392

tem function. Although the causes of spatial synchrony in species richness appear complex393

and remain only partly understood, richness synchrony appears to be an effective integrator394

of several processes linking biodiversity and stability. While investigations of the spatial395

synchrony of community variables are uncommon now, the growing availability of long-term,396

spatially replicated community datasets enables broader application of this approach. Re-397

gardless of whether this approach ultimately earns widespread use, the apparent commonness398

of richness synchrony and its relationship to stability underscore the importance of spatial399

structure and spatial scale to ecological stability and biodiversity-ecosystem function rela-400

tionships (Chase & Ryberg, 2004; Wang & Loreau, 2014; Gonzalez et al., 2020; Downing401

et al., 2008).402
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Table 1: Model parameters, description, and ranges used in generating simulations.

Parameter Description Value/Range
S number of species in the regional species pool Sample(min= 15, max= 55)
P number of patches in the metacommunity Sample(min= 9, max= 49)
h spatial heterogeneity between patches Uniform(min= 0, max= 0.5)
a temporal autocorrelation in climate Uniform(min= 0, max= 0.75)
b magnitude of the effect of climate (1− a2)0.5

µe,p,t environmental fluctuations in each patch Normal(mean= ct, sd= h)
envsd standard deviation of effect of env. variation Uniform(min= 0.05, max= 0.5)
σe,s response of each species to env. variation Normal(mean= 0, sd=envsd)

µd,s,p,t demographic fluctuations Normal(mean= 0, sd= 1)
σd,s effect of demographic fluctuations Uniform(min= 0, max= 0.75)
ravg scaled average growth rate Uniform(min= 0, max= 0.25)
ri species-specific growth rate Uniform(min= 0.5− ravg, max= 0.5 + ravg)

βmax maximum competition coefficient Uniform(min= 0, max= 0.5)
βs,j competition coefficient of species j on species s Uniform(min= 0, max= βmax)
d dispersal rate Uniform(min= 0, max= 0.2)
Ks carrying capacity Lognormal(logmean= 3, Logsd= 1)
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Table 2: Empirical datasets. Dataset codes correspond to, respectively: DRT, Dry Tor-

tugas, FL; HAY, Hayes, KS; JRG, Jasper Ridge, CA; JRN BASN, Jornada LTER Basin;

JRN IBPE Jornada LTER International Biological Program exclosure; JRN SUMM Jornada

LTER Mount Summerford; KNZ UP, Konza Prairie upland; KNZ LOW, Konza Prairie low-

land; LOK, Lower Florida Keys; MAU, Maui, HI; MCR BACK, Moorea Coral Reef LTER

Backreef; MCR FRNG, Moorea Coral Reef LTER fringing reef; MCR OUT, Moorea Coral

Reef outer reef; MDK, Middle Florida Keys; SBC, Santa Barbrara Coastal LTER; SEV B,

Sevilleta LTER blue gramma; SEV C, Sevilleta LTER creosotebush; SEV G, Sevilleta LTER

black gramma; UPK, Upper Florida Keys; USVI, US Virgin Islands LTER. Year corresponds

to the initial year of the time series. Extent gives the maximum inter-patch distance, in km.

Ntaxa gives the total number of taxa (i.e., γ-diversity) of the metacommunity.

Dataset Year Length Nplots Extent Biome Ntaxa Variable Plot size
DRT 2005 11 6 16.5 marine 25 % cover 0.25m2

HAY 1943 30 13 0.05 grassland 16 % cover 1m2

JRG 1983 34 12 0.03 grassland 25 % cover 1m2

JRN BASN 1989 24 49 0.09 grassland 44 biomass 1m2

JRN IBPE 1989 24 49 0.08 grassland 51 biomass 1m2

JRN SUMM 1989 24 49 0.09 grassland 53 biomass 1m2

KNZ UP 1983 33 20 0.17 grassland 47 % cover 10m2

KNZ LOW 1983 33 20 0.23 grassland 44 % cover 10m2

LOK 1996 20 14 49.0 marine 28 % cover 0.25m2

MAU 2001 16 9 50.4 marine 21 % cover 0.25m2

MCR BACK 2006 10 30 16.65 marine 15 % cover 0.25m2

MCR FRNG 2006 10 30 15.67 marine 28 % cover 0.25m2

MCR OUT 2006 10 30 17.29 marine 25 % cover 0.25m2

MDK 1996 20 8 55.4 marine 24 % cover 0.25m2

SBC 2001 18 34 73.38 marine 30 biomass 80m2

SEV B 2002 13 30 0.70 grassland 42 biomass 1m2

SEV C 1999 16 30 1.33 grassland 29 biomass 1m2

SEV G 1999 16 22 0.81 grassland 27 biomass 1m2

UPK 1996 20 10 44.7 marine 23 % cover 0.25m2

USVI 1992 26 6 1.38 marine 17 % cover 0.25m2
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7 Figure Captions546

Figure 1: Spatial synchrony in species richness in (A) 2500 simulated and (B, C) 20 empirical547

metacommunities.548

Figure 2: Effect sizes of variation in model parameters on the degree of spatial synchrony549

of richness in simulated metacommunities. Effect sizes are linear regression coefficients on550

standardized predictors. Error bars indicate 1 standard error.551

Figure 3: Effect sizes of variation in attributes of empirical and theoretical metacommunities552

on spatial synchrony of richness. Effect sizes are linear regression coefficients on standardized553

predictors. There is no direct analog of biome or extent in our theoretical simulations, so no554

bar is drawn. Error bars indicate 1 standard error.555

Figure 4: Richness synchrony is related to stability of ecosystem function in theoretical (A)556

and empirical (C) metacommunities, and more strongly so than species richness itself in both557

theoretical (B) and empirical (D) metacommunities. Stability is measured, for simulations,558

as the -1 × the coefficient of variation (CV) of total abundance, and for empirical datasets559

as that of total biomass or total cover, depending on units of the underlying data (Table 2).560
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Figure 1: Spatial synchrony in species richness in (A) 2500 simulated and (B, C) 20 empirical
metacommunities.
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Figure 3: Effect sizes of variation in attributes of empirical and theoretical metacommunities
on spatial synchrony of richness. Effect sizes are linear regression coefficients on standardized
predictors. There is no direct analog of biome or extent in our theoretical simulations, so no
bar is drawn. Error bars indicate 1 standard error.
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Figure 4: Richness synchrony is related to stability of ecosystem function in theoretical (A)
and empirical (C) metacommunities, and more strongly so than species richness itself in both
theoretical (B) and empirical (D) metacommunities. Stability is measured, for simulations,
as the -1 × the coefficient of variation (CV) of total abundance, and for empirical datasets
as that of total biomass or total cover, depending on units of the underlying data (Table 2).

31

This	article	is	protected	by	copyright.	All	rights	reserved

A
cc

ep
te

d 
A

rt
ic

le




