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Abstract
1.	 Changes in the global climate system are creating increasingly non-analogue cli-

mate conditions with expectations of non-stationarity among climate drivers. 
Decoupling among climate drivers complicates the assessment of ecological re-
sponse to the changing climate as characteristics that could be once treated as a 
suite of conditions now need to be treated as potentially independent with pos-
sible synergistic effects.

2.	 Ecologists commonly use ordination techniques (often principal component analy-
sis; PCA) on large climate and environmental datasets to reduce a range of vari-
ables to a few axes that are uncorrelated with each other and often explain large 
proportion of the variation in the original data. However, non-stationarity, with 
correlations among variables changing over time, can affect this approach. Here, 
we use a 37-year climate dataset from the Niwot Ridge Long Term Ecological 
Research site (Colorado, USA) to present the use of both moving window principal 
component analysis and moving window correlation analysis to determine non-
stationarity in climate data.

3.	 Relationships among climate variables and between input variables and PCA axes 
changed over time; this obscured interpretation of relationships between PCA 
axes and an ecological response (plant biomass), suggesting that one-time PCA for 
environmental variables may lead to inappropriate inferences.

4.	 Synthesis. Care must be taken in analysing climate–ecological relationships when 
predictor variables exhibit non-stationarity. We present a conceptual decision-
making tree to help ecologists consider when to use PCA and extract axis scores 
or use alternative approaches for incorporating non-stationarity into subsequent 
analysis, including testing variables individually to aid in interpretation, break 
point analyses and averaging PC scores.
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1  | INTRODUC TION

Unprecedented rates of environmental change worldwide have fu-
elled growing concern about how ecosystems will respond to these 
changes (Sala et  al.,  2000). However, even in well-studied cases 
where we have a fairly good understanding of changes over the past 
several decades, forecasting future dynamics and describing future 
states has proven difficult (Dietze et  al.,  2018). One key hurdle in 
most empirical statistical models and many process-based models is 
the assumption of stationarity that the current relationships among 
system components will hold in the future, when in many cases data 
actually exhibit non-stationarity (McKenzie & Littell,  2017; Turco 
et al., 2018; Wolkovich et al., 2014). We define non-stationarity as 
a change in the relationship, either in direction or magnitude (from 
a significant relationship to no relationship and vice versa) between 
variables over time. Such non-stationarity is often combined with 
the additional hurdle of needing multivariate statistics such as prin-
cipal component analysis (PCA) to reduce the dimensionality of com-
plex datasets.

Changes in the global climate system are creating increasingly 
non-analogue climate conditions (García-López & Allué, 2013), with 
expectations of non-stationarity among climate drivers. Highly 
coupled climate characteristics may begin to decouple, chang-
ing the relationships between drivers (Williams & Jackson,  2007; 
Williams et al., 2007; Marino et al., 2011; Deng & Wei, 2015; Cook 
& Wolkovich,  2016; Wu et  al.,  2018; Hao et  al.,  2019). For exam-
ple, temperature and drought used to be highly coupled in Europe 
with drought conditions necessary for extreme heat generation; in 
recent decades, this relationship has been decoupled, with extreme 
heat events occurring without drought (Cook & Wolkovich, 2016). 
This sort of decoupling complicates the assessment of ecological re-
sponse to the changing climate, as characteristics that could be once 
treated as a suite of conditions now need to be treated as potentially 
independent with possibilities for synergistic effects.

While we know that real-world data are rarely stationary, in-
corporating non-stationarity into model predictions is challenging 
(Wilmking et al., 2020). It has proven both difficult to find suitable 
alternative modelling approaches and difficult to determine which 
key relationships to address, as non-stationarity can occur across 
drivers, between a driver and response, or across responses, 
and these relationships may change over space or time. Many 
fields from meteorology (Hao et al., 2019) and hydrology (Jain & 
Lall,  2001; Milly et  al.,  2008), to ecology (Foody,  2004; da Silva 
Cassemiro et al., 2007; Wimberly et al., 2008), evolution (Squartini 
& Arndt, 2008) and dendrochronology (Wilmking et al., 2020) are 
beginning to address this issue. For example, Jain and Lall (2001) 
used moving window regressions to assess non-stationarity in 
flooding events over time. Yet, assumptions of stationarity re-
main commonplace (e.g. Cueto & Casenave,  1999; Estrada-Peña 
& Venzal,  2007; Jarema et  al.,  2009; Loarie et  al.,  2008; Palmer 
et al., 2017; Pinto et al., 2011; Short & Trembanis, 2004; Silverberg 
et al., 2013; Sousa et al., 2007; Voigt et al., 2003). It is thus crucial 
for the field of ecology, to properly analyse and interpret data, to 

address this issue via discussion, awareness, education and meth-
odological developments.

Here we explore how long time-series data can be used to iden-
tify non-stationary relationships among ecologically important cli-
mate characteristics, and how this identification of non-stationarity 
may affect conclusions related to ecological response to climate 
change. We specifically focus on long-term records of climate char-
acteristics at the Niwot Ridge Long-Term Ecological Research site, 
a high elevation alpine ecosystem in the Front Range of the Rocky 
Mountains in Colorado. In this system, changes in temperature, 
precipitation and growing season length have occurred over the 
37-year measurement period. We first ask whether these changes 
can be considered as a stationary suite of coupled characteristics 
relating to climate change using covariance-based analyses—moving  
window principal component analysis (PCA) and moving window 
correlations. We are not necessarily advocating for using PCA 
over other methods, but rather are examining the assumptions of 
a commonly used analysis and the potential impacts on results. We 
then detail the consequences of different explanatory variable ap-
proaches that treat climate changes as a suite of coupled character-
istics or independently in predicting changes in alpine tundra plant 
biomass over time. Lastly, we discuss approaches to better under-
stand the complexity of changes in climate variables, including the 
value of univariate drivers as well as breakpoint analyses, in an ef-
fort to strengthen investigations of ecological responses to climate 
over time.

The goal of this paper is to explore how to both incorporate the 
complexities of climate change into ecological analyses while also 
appreciating the challenges of covariance-based analyses of climate 
variables over time. By examining a commonly used type of covari-
ance-based analysis, PCA, we hope to spur further discussion about 
these broad analytical issues. While we expect that there is no one 
tool or method to examine non-stationarity among co-occurring 
climate drivers, it is critical—from both a statistical and conceptual 
perspective—to treat climate change as a complex, multidimensional 
and likely non-stationarity phenomenon when addressing key eco-
logical questions about how climate is driving ecological responses.

2  | MATERIAL S AND METHODS

The data used in this analysis come from the Saddle Site of the Niwot 
Ridge Long-Term Ecological Research site in the Front Range of the 
Colorado Rocky Mountains (40.05°N, −105.59°W, 3,530  m eleva-
tion). Climate data have been recorded at this site since the 1950s. 
Here we focus on climate data from 1982 to 2018, a period with more 
complete data featuring additional variables not measured before the 
1980s. Since this is an alpine ecosystem with a summer growing sea-
son, we mainly focus on summer (June–August) climate variables that 
are important for plant growth. The following nine climate variables 
were used in the analysis: mean summer temperature (meanT; mean 
of mean daily summer temperatures), growing degree days (GDD; 
number of degree days in June, July and August with a minimum daily 
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temperature above 5°C), growing season length (GSL; number of days 
in which the temperature never goes below −3°C for three consecu-
tive days), ice off date (IceOff; day of year when Green Lake 4, in the 
valley adjacent to the Saddle Site, is clear of ice), potential evapotran-
spiration (PET; calculated from daily max and min temperatures and 
daily precipitation, Gavin, 2019), moisture deficit (MD; calculated from 
daily max and min temperatures and daily precipitation using the modi-
fied Thornthwaite index with a field capacity of 75, Gavin, 2019), first 
day since May 1 with a 5-day running max temperature above 12°C 
(Days12C), first day since March 1 with a 5-day running max tem-
perature above 5°C (Days5C) and total summer precipitation (Precip). 
We chose the −3°C, 5°C and 12°C cut-offs as they are all biologically 
relevant freezing or mortality thresholds for plants, pikas and trees, 
respectively (Sakai & Otsuka,  1970; Sebastian et  al.,  2016; Stewart 
et  al.,  2015). Moisture deficit serves as a drought index and we did 
not use minimum or maximum temperatures as they were correlated 
with mean temperature and are used as inputs to calculate other vari-
ables (e.g. GSL, GDD, Days5C, Days12C). Temperature data were re-
corded by a thermohygrograph (1982–1986), a Campbell Instruments 
CR21X data logger (1986–2000), a Campbell Instruments CR23X data 
logger (2000–2012) and a Campbell Instruments CR1000 data logger 
(2012–2018). Precipitation data were recorded by a chart recorder 
(1982–2018). Winter precipitation was corrected for overcatch as rec-
ommended by Williams et al., (1998) with a correction factor of 0.39. 
Data were infilled when necessary following established methods at 
our site and described in Niwot Ridge LTER public datasets on the 
Environmental Data Initiative Website (https://portal.edire​posit​ory.
org/nis/brows​eServ​let?searc​hValu​e=NWT).

To ask whether relationships among these key characteristics were 
stationary across the 37-year time series, we conducted moving win-
dow PCA and moving window correlations. Moving window analyses 
involve taking a subset (window) of the dataset of a particular amount 
of time and then shifting the start point of the window one time point 
at a time until the whole dataset has been covered by the window. It 
thus involves performing many separate PC analyses and correlations 
and then plotting and examining how the results change over time. We 
define non-stationarity as a change in the relationship, either in direc-
tion or magnitude (from a significant relationship to no relationship and 
vice versa) between variables over time. We conducted PCA on scaled 
variables using the rda() function in the vegan R package (Oksanen 
et al., 2019). Data were checked for linearity, an assumption of PCA, 
by plotting all possible raw variable pairs. To assess how many compo-
nents to retain, we used parallel analysis (Horn, 1965) with the hornpa() 
function in the hornpa R package; the magnitude of the eigenvalues in 
our PCA compared to the parallel analysis suggested retaining the first 
two components. For correlations, we used the cor.test() function in 
the car package, using the Pearson method (Fox & Weisberg, 2019). 
We did not exhaustively run all pairwise correlations but rather focused 
on correlations between each variable and temperature (temperature 
strongly and consistently loaded on PC1). We conducted the PCA and 
correlations on the entire dataset, on 10-year windows of data, and 
on 15-year windows of data. We chose these window sizes to balance 
having enough data within each window (i.e. more years than variables) 

and having enough windows to examine the trends over time. For ref-
erence, these window sizes correspond to between a half and a quar-
ter of our total dataset and we used two window sizes to examine the 
consistency of the results and ensure the results are not an artefact of 
window size. For much longer datasets (e.g. hundreds of years tree ring 
data), it is recommended to use at least 30-year windows (Wilmking 
et al., 2020); longer window sizes are preferable because they are not so 
affected by outliers. We developed these methods based on consider-
ation of the above points; there was no previous literature on methods 
to set window length. While the direction of a variable loading on an 
axis is necessary for interpretation, to analyse just the strength of the 
loading of a variable onto a PCA axis, we extracted the absolute value 
of the PC scores for each variable for each window. To formally assess 
the non-stationarity in variable correlations and inform sub-setting 
the dataset, we conducted a breakpoint analysis using the segmented 
R package (Muggeo, 2008). We also conducted breakpoint analysis on 
the individual climate variables over time to see whether breakpoints 
in the individual variables drove non-stationarity. We fit linear mod-
els using zero, one, two and three breakpoints, and compared models 
using the ANOVA() function in the stats R package.

Our second objective was to determine the consequences of dif-
ferent explanatory variable approaches that treat climate changes 
as a suite of coupled characteristics or independently in predicting 
changes in alpine tundra plant biomass over time. Plant biomass is 
defined as annual net primary productivity (ANPP) and data come 
from 14 years of above-ground biomass clippings in five 0.2 m by 
0.5 m wet meadow tundra plots also at the Saddle Site. Biomass data 
were not collected yearly and are thus only available for a subset of 
years for which we have climate data. We used linear mixed effects 
models implemented with the lmer() function in the lme4 package 
(Bates et  al.,  2015) to assess the relationships between plant bio-
mass and the first PCA axis (which assumes stationarity), versus 
relationships solely based on independent climate characteristics 
(temperature, growing degree days and growing season length), with 
plot as a random factor (to account for repeated sampling). For these 
mixed effects models, we report the conditional R2 (R2

cond
) and mar-

ginal R2 (R2
marg

) values (Nakagawa & Schielzeth, 2013) as calculated by 
the r2_nakagawa() function in the performance R package (Lüdecke 
et al., 2020). As a follow-up to the breakpoint analysis, we also ran 
separate models for the 1992–1995 time period, and 2008–2018 
time period, which corresponded to periods of time in which climate 
variables were coupled and decoupled. We also explored the cre-
ation and effectiveness of a new PC variable by calculating a mean 
PC score for each year by averaging the PC scores of any moving 
window containing that year, which is an attempt to integrate the 
idea of non-stationarity into PC scores. All analyses were done in R 
version 3.5.3 (R Core Team, 2019).

3  | RESULTS

Principal component analysis of all 37 years of data separated the 
climate data into two principal axes that explained 71% (52.79% plus 

https://portal.edirepository.org/nis/browseServlet?searchValue=NWT
https://portal.edirepository.org/nis/browseServlet?searchValue=NWT
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18.53%) of variation in the data. The first axis generally described 
warming and extended growing season while the second axis de-
scribed moisture stress (Figure 1). The variable loadings (displayed as 
vectors in Figure 1) suggested that temperature, GDD, ice off dates, 
evapotranspiration, and days until 5-day running 5°C and 12°C are 
all strongly associated with axis one while GSL was moderately as-
sociated with axis one (Table 1). Precipitation and moisture deficit 
were strongly associated with the second axis (Table 1).

Ten-year and 15-year moving window PCA demonstrated that 
temperature and GDD reliably loaded strongly onto axis one while 
the other variables loading on axis one in the all-years PCA did 
not reliably load on that axis across all moving windows (Figure 2, 
Figure S1). This suggests non-stationarity in these climate data, par-
ticularly between temperature/GDD and the other variables. An al-
ternative explanation for such moving window PCA results is that, 
if the amount of variation explained by certain variables changes, 
the first and second axes in a particular window could potentially 
be switched, or certain variables could be strongly correlated with 
PC3 or other axes. Such switching is unlikely the case in our data, 
as temperature and GDD always loaded strongly onto axis one. The 
other variables sometimes loaded strongly on axis one, but this was 
inconsistent, suggesting non-stationary relationships between those 
variables and temperature or GDD. For example, across 10-year 
windows GSL and days to 5-day running 5°C varied from a strong 
loading (~0.75) in three windows to a very weak loading (~0) in three 
windows. The temporal patterns of PC1 score fluctuations also dif-
fered across the variables (Figure S1). Some variables (Precip, MD, 
Days5C) showed multiple fluctuations in their PC1 loadings while 
other variables (Days12C, GSL) started with high loadings which 
then decreased in windows starting in the 1990s before increas-
ing again. This visual non-stationarity was further evidenced and 

confirmed by moving window correlational analysis of temperature, 
GDD and GSL.

While temperature and GDD were strongly positively cor-
related throughout the study period (stationary relationship), the 
correlation between temperature and GSL changed over time (non-​
stationary relationship, Figure  3), becoming uncorrelated in the 
1990s. The other six variables also exhibited non-stationary rela-
tionships with temperature, as correlations ranged from strong and 
significant to weak and non-significant over time (Figure  S2). We 
use temperature and GDD as an example of a stationary relation-
ship and temperature and GSL as an example of a non-stationary  
relationship. Breakpoint analysis identified two breaks in the tem-
perature and GSL correlation coefficients. For the 10-year windows, 
breakpoints were at windows beginning in 1990 and 1997. For  
15-year windows, breakpoints were at windows beginning in 1992 
and 1994. Note that these breakpoints do not correspond with 
changes in instrumentation. We also confirmed these results with 
climate data from the nearby D1 climate station with more consis-
tent instrumentation to test for the potential influence of instru-
ment changes at the Saddle (Figure  S3). Furthermore, correlation 
results using Spearman correlations were consistent with the 
Pearson correlations (Figure  S4). Individually, temporal trends in 
temperature and days to 5-day running 12°C both exhibited break-
points, which likely contributed to the non-stationarity in the PCA 
and correlations (Figure S5).

F I G U R E  1   Principal component analysis of nine summer (June–
August) climate variables over 37 years at Niwot Ridge, Colorado. 
Points are years distributed in climate space; vectors indicate the 
direction and extent of correlation between climate variables and 
each axis. Variables and their abbreviations are defined in the 
methods. Temp is the mean summer temperature
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TA B L E  1   Axes scores, loadings and correlations for the 
nine climate variables for the first two principal components 
in the full 37-year principal component analysis. The table is 
sorted by absolute value of PC1 score. GDD = growing degree 
days, Temp = mean summer temperature, PET = potential 
evapotranspiration, Days12C = first day since May 1 with a 5-day 
running max temperature above 12°C, IceOff = Green Lake 4 
ice off date, GSL = growing season length, Days5C = first day 
since March 1 with a 5-day running max temperature above 5°C, 
MD = moisture deficit, Precip = summer precipitation. Loadings 
were calculated with the scores() function in vegan with scaling 
set to 0. Correlations between the ith variable and the jth PC 
were calculated with the equation ρij = αij (λj/σii)

1/2, where αij is 
the loading for the ith variable in the jth PC, λj is the eigenvalue 
associated with that PC and σii is the variance of the ith variable 
(Cadima & Jolliffe, 1995) and can be above 1

Variable

PC1 PC2

Score Loading Correlation Score Loading Correlation

GDD 1.32 0.43 1.02 −0.31 −0.17 −0.14

Temp 1.29 0.42 1.00 −0.44 −0.24 −0.20

PET 1.22 0.40 0.94 −0.21 −0.12 −0.10

Days12C −1.17 −0.38 −0.90 −0.09 −0.10 −0.04

IceOff −1.01 −0.33 −0.78 −0.24 −0.13 −0.11

GSL 0.90 0.29 0.69 −0.74 −0.40 −0.34

Days5C −0.85 −0.28 −0.65 −0.42 −0.23 −0.19

MD 0.69 0.22 0.53 0.91 0.50 0.42

Precip −0.47 −0.15 −0.36 −1.18 −0.65 −0.54
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F I G U R E  2   Moving window PCA of (a) 10-year windows (n = 28) and (b) 15-year windows (n = 23). The legend refers to window number, 
where window 1 = 1982–1991 (10-year windows) or 1982–1996 (15-year windows). To facilitate comparison of the strength of loading of the 
variables on each PCA axis, we show the absolute values of the first two axes scores of each variable calculated in each window. Variables 
that load reliably on an axis are expected to have non-stationary relationships with variables with sometimes strong and sometimes weak 
loadings on an axis
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F I G U R E  3   Moving window correlation analyses between mean summer temperature and either growing degree days or growing season 
length for (a) 10-year windows (n = 28) and (b) 15-year windows (n = 23). Panel (c) shows raw scatterplots between temperature and GSL 
and temperature and GDD from 1982 to 2018. Correlation coefficients are Pearson r values, and the significance of the correlations in 
(a) and (b) are by either triangles (significant, p < 0.05) or circles (not significant, p > 0.05). While the sample size is smaller than the whole 
dataset (n = 10 or 15 vs. n = 37), the trends in these graphs are not affected by sample size, as each point within each panel was calculated 
on the same number of samples (10 or 15). To check that the result of the correlation coefficient dropping to ~0 in some windows was not an 
artefact of the small sample size in the windows (i.e. 10 years or 15 years), we randomly selected 10 samples spread out across all decades of 
the dataset for 500 trials and always found that r > 0.40 for temperature and GSL; thus, this result is driven by correlations over consecutive 
years of data, not the smaller sample size

F I G U R E  4   Relationship between mean 
(±SE) annual net primary productivity 
(ANPP; i.e. plant biomass) and (a) PC1, (b) 
mean summer temperature, (c) growing 
degree days and (d) growing season 
length. Lines are shown for significant 
(Linear Mixed Effects Model, p < 0.05) 
predictors. PC1 and GSL significantly 
predicted ANPP while temperature and 
GDD did not, despite strong correlations 
with PC1, highlighting non-stationarity 
and challenges with interpreting axis 
scores
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The purpose of examining these climate data for non-stationarity 
is ultimately to understand relationships between climate and eco-
logical variables, in this case, plant production (above-ground bio-
mass). There was a significant positive relationship between the first 
axis score of the PCA and plant biomass (R2

cond
 = 0.31, R2

marg
 = 0.04, 

p  =  0.01, Figure  4). Consistent with the moving window analysis 
showing non-stationarity between temperature/GDD and GSL 
(Figure 2), plant biomass was not significantly related to either mean 
summer temperature (R2

cond
 = 0.30, R2

marg
 = 0.02, p = 0.05) or growing 

degree days (R2
cond

 = 0.29, R2
marg

 = 0.01, p = 0.12, Figure 4) but was 
related to growing season length (R2

cond
 = 0.31, R2

marg
 = 0.04, p = 0.01, 

Figure 4). When the dataset was divided into two time periods, there 
were significant relationships between temperature, GSL and plant 
biomass in the 1992–1995 timeframe and not the 2008–2018 time-
frame (Figure 5).

4  | DISCUSSION

Many studies in ecology involve the measurement of climatic and 
other environmental variables and the analysis of the relationship 
between those variables and the abundance, growth or distribution 
of organisms. Such studies are especially important now to under-
stand how changing climate drivers are already impacting organ-
isms and ecosystems and to predict future changes. It has become 
a frequent practice in ecology to conduct PCA or other covariance-
based approaches on tens of climate variables to use axes scores as 
predictor variables in regression models with ecological responses 
(e.g. Cueto & Casenave,  1999; Estrada-Peña & Venzal,  2007; 
Jarema et al., 2009; Loarie et al., 2008; Pinto et al., 2011; Short & 
Trembanis, 2004; Silverberg et al., 2013; Sousa et al., 2007; Voigt 
et al., 2003). It is also common for climatologists to use PCA to ana-
lyse climate data (Ehrendorfer, 1987; Huth & Pokorná, 2005; Tadić 
et al., 2019). However, this method assumes not only linearity but 

also stationarity in the climate data, an assumption that we tested 
in this paper. While our climate variables were linearly related, the 
assumption of stationarity (according to our definition, see methods) 
was not met and clouded important conclusions about drivers of the 
responses of our ecological variable, plant biomass. Below, we pre-
sent a decision-making tree for considering how to best use PCA or 
other covariance-based approaches in temporal analyses (Figure 6).

The first thing to consider when deciding whether to use cova-
riance-based approaches is if they are critical to helping answer the 
study questions or achieving the study goals, and if the data necessary 
to meet the requirements of the method are available (Figure 6). If the 
goal is to reduce the dimensionality of the dataset or develop a metric 
that takes multiple variables into account, extracting PCA axes scores 
and using them as predictor variables may be appropriate, or even 
necessary if a suite of variables is at play and there is no one obvious 
driver. For example, in our dataset, model selection with exhaustive all 
subsets regression showed that multiple individual predictor variables 
and combinations of predictor variables are very similar (within 2 AIC) 
in their model fits for a given response variable (Table S1). When using 
PCA, it is also important to conduct parallel analysis to decide how 
many components to contain. If the goal is to delve into nonlinear 
trends, examine interactions among variables or simply find the best 
set of predictor variables, extracting PC scores is not appropriate. In 
that case, PCA can still be useful for examining relationships among 
variables and selecting uncorrelated variables across the whole time 
period (Figure 6). However, as shown here, some variables may be cor-
related for only specific time periods so even in this case it could be 
beneficial to conduct moving window PCA and correlations. In our 
case, the goal was to develop a metric that described not just summer 
warming, but a hotter, drier and longer summer, to use data from both 
terrestrial and aquatic systems to inform this metric, and ultimately 
assess the effects of climate on tundra primary production. After 
conducting the PCA on all years of data, the first principal compo-
nent emerged as a potential ‘extended summer’ metric, as it included 

F I G U R E  5   Relationship between mean (±SE) annual net primary productivity (ANPP; i.e. plant biomass) and (a) PC1, (b) mean summer 
temperature (Temp), (c) growing degree days (GDD) and (d) growing season length (GSL) for the dataset divided into two subsets (1992–1995 
and 2008–2018). Lines are shown for significant (Linear Mixed Effects Model, p < 0.05) predictors. Temp R2

cond
 = 0.46, R2

marg
 = 0.16; GSL R2

cond
 

= 0.47, R2
marg

 = 0.17. Dividing the data enables analysis of relationships between different predictor variables and a response variable for time 
periods during which the different predictor variables are correlated and uncorrelated with each other. The division of the data into these 
time periods was based on the breakpoint analysis
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temperature, growing season length, and evapotranspiration and high 
values on this axis corresponded to summers characterized by high 
values of these variables (2002, 2012, 2018).

However, it is important to appreciate that climate variables may 
be correlated for only specific time periods within a longer time se-
ries. Conducting moving window PCA and moving window correla-
tions (Figure 2, Figure 3) is one approach to address this possibility. 
In our data, these analyses demonstrated that variables thought to 
be strongly correlated with a PCA axis were not always strongly cor-
related with that PCA axis throughout the whole course of the data-
set, which could be caused by climate change and/or a combination 
of interannual and interdecadal variation. In particular, the relation-
ship between growing season length and temperature was non-sta-
tionary, going from significantly correlated with relatively strong 
correlation coefficients between 0.5 and 0.75 to not significantly 
correlated with correlation coefficients near zero; this non-station-
arity was confirmed with breakpoint analysis and appeared to be 
driven by a transition in the 1990s.

It is also important in any modelling framework to consider bio-
logical mechanisms that underpin the inclusion of a climate variable; 
warmer temperatures do not necessarily lead to a longer growing 
season length unless there are consecutive days of warmer tempera-
tures at the start and end of the growing season. Furthermore, spring 
and fall temperatures may change at different rates than summer 
temperatures. For example, studies have shown that climate change 
and warming may actually increase temperature fluctuations in the 
spring, which can lead to frost damage in plants (Gu et  al.,  2008; 
Marino et al., 2011; Rigby & Porporato, 2008), and these types of 
dynamics are difficult to incorporate into models.

The issue of non-stationarity becomes especially problematic 
when trying to interpret a PCA-derived metric in the context of 
an ecological response. Thus, because of this non-stationarity, we 

would either choose not to proceed with extracting axes scores and 
regressing them with our ecological response (Figure 6, but we have 
done so here for illustration) or try to incorporate the non-stationar-
ity into the models. For example, we found that wet meadow tundra 
biomass increases significantly as the first axis of the all-years PCA 
increases, suggesting that the warmer, drier, longer summer is ben-
eficial for plant growth in this particular ecosystem type. Without a 
moving window PCA, the relationship would suggest that warmer 
temperatures, more growing degree days, longer growing season 
length, earlier ice off dates, less time to reach 5 days at 5°C or 12°C 
and more evapotranspiration were all associated with increasing 
biomass, or that one or a few of these variables drove increasing 
biomass but could not be easily statistically isolated from the others. 
The moving window PCA suggests that further partitioning is both 
possible and advisable in light of non-stationarity, as only tempera-
ture and growing degree days reliably loaded strongly on axis one 
over the all of the windows. Thus, we ran individual linear regres-
sions to see whether variables such as temperature, GDD and GSL 
were also significantly related to biomass. Interestingly, the two vari-
ables most strongly correlated with the first principal component, 
temperature and GDD, did not significantly predict plant biomass 
while GSL did, although R2 values were quite low for all variables.

Alternatively, we suggest two avenues to incorporate non-sta-
tionarity into the modelling framework (a) depending on the length 
of the dataset, explore sub-setting the response variable into either 
moving windows or different time periods based on the breakpoint 
analysis and (b) calculating a new PC score predictor variable where 
the value for each year is the average value of all of the moving win-
dows that contain that year. Note that the first method incorporates 
non-stationarity directly into the analysis while the second method 
seeks to indirectly take it into account by calculating a new variable. 
In our dataset, for the first method we divided the biomass data into 

F I G U R E  6   Decision-making process on 
how to use PCA in an analysis involving a 
time series of climate and ecological data. 
MW = moving window, VIFs = variance 
inflation factors. Other methods could 
include, but are not limited to, generalized 
additive models, polynomial models, 
random forest models, all subsets 
or forward or backward stepwise 
regressions, generalized least sum models, 
but it is outside the scope of this paper  
to compare and discuss all of these 
methods
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two timeframes—the first four years from 1992 to 1995 and the most 
recent years 2008–2018, and conducted the same four regressions 
with PC1, temperature, GDD and GSL. These subsets correspond to 
a time period in which temperature and GSL were decoupling, and a 
time period in which temperature and GSL were already decoupled. 
In this particular case, these subsets were driven by the gap in our 
data; in an ideal case with biomass data for every year, the breakpoint 
analysis would have suggested breaking the dataset into 1982–1990, 
1991–1997 and 1998–2018 periods. The results highlighted that 
the trends in the data are driven by the oldest data, which contain 
years with two of the coldest summers (Figure 5) but also show that 
GSL and temperature can have the same relationship with biomass 
when they are more tightly coupled. Interestingly, this method also 
suggests non-stationarity between the predictor variable and the re-
sponse variable. This concept must be considered from an ecological 
perspective (e.g. the relationship between temperature and biomass 
could be non-stationary if plant species composition has changed or if 
the plant species have evolved) as well as a data perspective (e.g. the 
range of values for different time periods). For the second method, 
we calculated a ‘non-stationary PC1’ score which is, for each year, 
the average PC1 score of that year across any moving windows that 
contained that year. This essentially provides more data input into 
a year's PC scores, compared to just one PCA of the whole dataset. 
However, regressing this new metric against biomass yielded a similar 
R2 and p value as the original PC1 axis score; further work is needed 
to determine if this is a viable solution in other datasets.

Our results highlight the difficulties in interpreting extracted PCA 
axes scores and using them in subsequent analyses. In our example, 
we used simple variable axes loadings to interpret the first two princi-
pal components, which is the commonly used default approach (Cueto 
& Casenave, 1999; Dixit & Geevan, 2002; Pinto et al., 2011; Silverberg 
et al., 2013; Sousa et al., 2007; Voigt et al., 2003). However, when dis-
cussing PCA axis interpretation at length, researchers have cautioned 
against using simple axes loadings for axis interpretation (Cadima & 
Jolliffe, 1995; Jackson, 1991; Jolliffe, 2002; Peres-Neto et al., 2003) 
and have suggested calculating a correlation between an input vari-
able and an axis score. This correlation may or may not be as strong as 
the axis loading because it also takes into account the variance of the 
input variable and the component (Cadima & Jolliffe, 1995). While this 
correlation is important to check, in our case the correlations match up 
with the variable loadings such that temperature and growing degree 
days are more correlated with PC1 than GSL (Table 1).

If there are certain variables of interest or a goal is to test inter-
actions between variables, or compare multiple models, it may be 
better to select variables of interest and test them directly (Figure 6). 
This is especially true if a variable of interest strongly loads on the 
PCA axis. In this case, it would be best to simply run a regression be-
tween the response variable and the variable of interest. Focusing 
on a limited number of focal variables also facilitates easier model 
interpretation and allows for more effective exploration of nonlin-
ear trends including, but not limited to, running polynomial models, 
generalized additive models, or broken stick regression models, or 
testing for interactions among variables. PCA can still be a useful tool 

to examine relationships and correlations between variables and help 
select predictor variables for future regression analyses. For example, 
to find the best combination of predictor variables of plant biomass, 
we conducted all subsets multiple regression with the nine variables 
(Table S1). This would not be feasible in a dataset containing tens or 
hundreds of variables (for computational time, over fitting, or pro-
ducing many different equally good models), so PCA could be helpful 
in selecting variables to input into multiple regression models. This 
can be achieved by examining the effective visualization of variable 
correlations that PCA provides and deleting variables that have simi-
lar principal component loadings or weak axes loadings. Other tech-
niques analysing multicollinearity such as variance inflation factors 
(VIFs) may also be used in conjunction with PCA for deciding which 
variables to remove (Alin, 2010; Jolliffe, 2002; Lafi & Kaneene, 1992).

Non-stationary data are widespread in ecology, yet assumptions 
about stationarity are commonly violated. Part of the problem is a 
lack of discussion on this topic, as well as development of alternative 
analysis tools. Here, we have illustrated how non-stationarity among 
climate drivers can lead to misinterpretation of results and presented 
how moving window PCA, moving window correlation analyses, and 
breakpoint analysis can be useful for understanding the data struc-
ture and interpreting results. We have also suggested several ways 
to incorporate non-stationarity into the analysis. Future work should 
test these ideas with different datasets and expand and refine them, 
as we expect that each dataset will present its own complexities. We 
conclude that PCA or other covariance-based approaches are helpful 
tools for data exploration and dimension reduction, but caution must 
be exercised in interpreting results from models that assume a con-
sistent relationship among variables through time. There is a critical 
need to predict how climate drivers will affect organisms and eco-
systems. To successfully make such predictions, we must acknowl-
edge, and take into account, that interactions among the drivers may 
be as complex as the interactions among the biotic responses.
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